(within past ~six months)

RECENT B PHYSICS RESULTS FROM THE TEVATRON

KAREN GIBSON, CASE WESTERN RESERVE UNIVERSITY

An interesting time for indirect NP searches...

- Many interesting,
 though statistically
 limited, discrepancies
 observed recently
 - □ ~2σ deviation of CP phase β_s in $B_s^0 \rightarrow J/\psi \phi$ decays observed by CDF, D0

An interesting time for indirect NP searches...

- Many interesting,
 though statistically
 limited, discrepancies
 observed recently
 - disappearance shows difference in Δm^2 w.r.t. ν_{μ} disappearance result

An interesting time for indirect NP searches...

- Many interesting,
 though statistically
 limited, discrepancies
 observed recently
 - MiniBoone anti-V_e
 result suggests
 agreement w/LSND
 sterile neutrino result

■ Most notable example is new A_{sl}^b result from DO

In the News

Reports

- Fermilab Today report on the wine and cheese seminar
- Fermilab Today result of the week
- The New York Times, Dennis Overbye
- · The New York Times editorial
- Chicago Tribune and graphic, Ron Grossman
- Science magazine News of the Week, Adrian Cho
- · Symmetry Breaking, Tona Kunz
- The Christian Science Monitor
- San Francisco Chronicle, Jon Carroll
- TIME magazine, Michael D. Lemonick
- Ira Flatow's Science Friday on NPR, guest: Ron Cowen, transcript
- · Science News, Ron Cowen
- · Scientific American, John Matson
- Discovery (tv) News, Jennifer Ouellette
- WRCT, Carnegie Mellon University's radio, (mp3)
- · New Scientist, David Shiga
- . BBC News, Paul Rincon
- The Times (UK), Mark Henderson
- Daily Telegraph (UK), Andrew Hough
- Der Spiegel (Germany)
- Die Zeit (Germany)
- Frankfurter Allgemeine Zeitung (Germany)
- SWR2 Campus (German radio)
- Neue Zürcher Zeitung (Switzerland), Christian Speicher
- Le Monde (France), Pierre Le Hir
- Science and Technology Facilities Council (UK), John Womersley
- Public Service (UK)

Press releases

- · Fermilab and images
- Symmetry Breaking
- Interactions.org
- · Lancaster University
- · University of Arizona
- Indiana University
- Centre de Physique des Particules de Marseille, (in French)
- · York University
- SACLAY, (in French)
- UC Riverside
- IN2P3 Paris, (in French)
- Brookhaven National Lab
- UT Arlington
- · SUNY Stony Brook

Blog Articles

- Yale Alumni Magazine, Carole Bass. Our result was mentioned in President Bill Clinton's speech at Yale (video minute 9 onwards)
- · Resonaances, Jester
- <u>Resonaances</u>, Jester
- · The Reference Frame, Luboš Motl
- · The Reference Frame, Luboš Motl
- The Reference Frame, Luboš Motl
- · A Quantum Diaries Survivor, Tommaso Dorigo

See following talk by Derek Strom for details...

Strong tracking system, ability to trigger on displaced tracks

⇒ Good mass resolution, high statistics in non-leptonic decays

Excellent calorimetry, muon id, reverse direction of B field

⇒ Large samples of semi-leptonic and forward decays, good direct CPV res.

Di-muon triggers have dominated recent results

→ comparatively easy to trigger, no lifetime bias

Start from generic likelihood...

 Almost all results presented use similar decays, MLL fit to measure quantities of interest

Invariant Mass

Flavor tagging decision and tagging power Angular distribution of decay / Proper time and resolution

$$\mathcal{L} = f_s P_s(m \mid \sigma_m) P_s(t, \vec{\omega}, \vec{\xi} \mid \sigma_t, \vec{S}_D \vec{D}) P_s(\sigma_t) P_s(\vec{D})$$

$$+ (1 - f_s) P_b(m) P_b(t \mid \sigma_t) P_b(\vec{\omega}) P_b(\vec{\omega}) P_b(\sigma_t) P_b(\vec{D})$$

Account for differences between signal and background proper time resolution, flavor tagging

Decays

$$\mathcal{L} = f_s P_s(m \mid \sigma_m) P_s(t, \vec{\omega}, \vec{\xi} \mid \sigma_t, \vec{S}_D \vec{D}) P_s(\sigma_t) P_s(\vec{D})$$

$$+ (1 - f_s) P_b(m) P_b(t \mid \sigma_t) P_b(\vec{\omega}) P_b(\vec{\sigma}_t) P_b(\vec{D})$$

Use rare decays to search for flavor changing neutral currents

- Search for processes like
 - \blacksquare B⁰ $\rightarrow \mu^+\mu^-$, B_s⁰ $\rightarrow \mu^+\mu^-$
 - \square D⁰ $\rightarrow \mu^+\mu^-$
 - $□ B^0, B_s^0 \rightarrow e^+ \mu^-$ ⇒ leptoquarks
- SM processes are extremely rare or forbidden
 - \square $\mathcal{B}(B_s^0 \to \mu^+ \mu^-) = (3.6 \pm 0.3) \times 10^{-9}$
- New physics (e.g. SUSY) predicts new sources of FCNC

Examples of $B_s^0 \rightarrow \mu^+ \mu^-$ Decay Processes

SM processes

□ New physics processes

New limit on $\mathcal{B}(B_s^0 \rightarrow \mu^+ \mu^-)$

Uncertainty on production fraction contributes 15% uncertainty to measurement

$B_s^0 \rightarrow \mu^+ \mu^-$ Branching Ratio Approaching SM Predictions!

 $\square \mathcal{B}(\mathsf{B_s^0} \to \mu^+\mu^-) \otimes 95\% \mathsf{CL}$

□ D0 (6.1 fb⁻¹):

$$< 5.1 \times 10^{-8}$$

□ CDF (3.7 fb⁻¹):

$$< 4.3 \times 10^{-8}$$

SM $\mathcal{B}(B_s^0 \rightarrow \mu^+ \mu^-) = (3.6 \pm 0.3) \times 10^{-9}$

95% CL Limits on $\mathcal{B}(B_s \to \mu\mu)$

http://www-d0.fnal.gov/Run2Physics/WWW/results/final/B/B10B/

Study of $B_s^0 \rightarrow J/\psi K^{*0}$ and $B_s^0 \rightarrow J/\psi K_s^0$ decays

- □ Can use $B_s^0 \rightarrow J/\psi K^{*0}$ ($J/\psi K_s^0$) to study CP violation in B_s^0 system
 - $B_s^{~0} \rightarrow J/\psi K^{*0}$ helps to understand penguin contributions to CP violation in $B_s^{~0} \rightarrow J/\psi \phi$ (PRD 79, 014005 (2009))
 - Need to understand penguins to "pin down" NP contributions
 - $B_s^0 \rightarrow J/\psi Ks^0$ can be used to measure $\tau_H(B_s^0)$, CKM γ
 - First need to observe them!

First Observation of $B_s^0 \rightarrow J/\psi K^{*0}$ and $B_s^0 \rightarrow J/\psi K_s^0!$

 $N(B_s^0) = 151 \pm 25$, $N(B^0) = 9530 \pm 110$ $N(B_s^0) = 64 \pm 14$, $N(B^0) = 5954 \pm 79$ 80 significance w.r.t. null hypothesis

7.20 significance w.r.t. null hypothesis

$$\mathcal{B}(B_s^0 \to J/\psi \overline{K}^{*0}) = (8.3 \pm 1.2 \text{ (stat)} \pm 3.3 \text{ (syst)} \pm 1.0 \text{ (frag)} \pm 0.4 \text{ (PDG)}) \times 10^{-5}$$

$$\mathcal{B}(B_s^0 \to J/\psi \overline{K}_s^0) = (3.5 \pm 0.6 \text{ (stat)} \pm 0.4 \text{ (syst)} \pm 0.4 \text{ (frag)} \pm 0.4 \text{ (PDG)}) \times 10^{-5}$$

CDF has updated f_s/f_d (PRD77, 072003 (2008)) w/new D₁⁺ $\rightarrow \phi \pi^{+}$ BR: f₂/f₄ = 0.269 ± 0.033

Angular Analysis

$$\mathcal{L} = f_s P_s(m \mid \sigma_m) P_s(t, \vec{\omega}, \vec{\xi} \mid \sigma_t, \vec{S}_D \vec{D}) P_s(\sigma_t) P_s(\vec{D})$$

$$+ (1 - f_s) P_b(m) P_b(t \mid \sigma_t) P_b(\vec{\omega}) P_b(\vec{\sigma}_t) P_b(\vec{D})$$

16

 \overline{q}

FCNC studies of $b \rightarrow s \mu^+ \mu^-$ decays

 \overline{q}

 \overline{q}

SM decays expected through EW penguin or box diagrams, as in $B_s^0 \rightarrow \mu\mu$

First observation, 6.3σ significance

 \overline{q}

http://www-cdf.fnal.gov/physics/new/bottom/091112.blessed-b2smumu_afb/index.html

$b \rightarrow s \mu^+ \mu^-$ absolute and differential branching ratios

Measure $B \rightarrow h\mu^+\mu^-$ branching ratios relative to $B \rightarrow J/\psi h$ decays

$$\mathcal{B}(B^+ \to K^+ \mu^+ \mu^-) = [0.38 \pm 0.05(\text{stat}) \pm 0.03(\text{syst})] \times 10^{-6},$$

$$\mathcal{B}(B^0 \to K^{*0}\mu^+\mu^-) = [1.06 \pm 0.14(\text{stat}) \pm 0.09(\text{syst})] \times 10^{-6},$$

$$\mathcal{B}(B_s^0 \to \phi \mu^+ \mu^-) = [1.44 \pm 0.33(\text{stat}) \pm 0.46(\text{syst})] \times 10^{-6}.$$

B⁺, B⁰ competitive w/BELLE measurements (PRL103, 171801)

$B \rightarrow K^{(*)} \mu^+ \mu^-$ forward-backward asymmetry & polarization

$$\begin{split} P_{s}(\cos\theta_{K}) & \propto \frac{3}{2}F_{L}\cos^{2}\theta_{K} + \frac{3}{4}(1 - F_{L})(1 - \cos^{2}\theta_{K}) \\ P_{s}(\cos\theta_{\mu}) & \propto \frac{3}{4}F_{L}(1 - \cos^{2}\theta_{\mu}) + \frac{3}{8}(1 - F_{L})(1 + \cos^{2}\theta_{\mu}) + A_{FB}\cos\theta_{\mu} \end{split}$$

F_L and A_{FB} in $B \rightarrow K^{(*)} \mu^+ \mu^-$

CP Violation in $B_s^0 \rightarrow J/\psi \phi$

$$\mathcal{L} = f_s P_s(m \mid \sigma_m) P_s(t, \vec{\omega}, \vec{\xi} \mid \sigma_t, \vec{S}_D \vec{D}) P_s(\sigma_t) P_s(\vec{D})$$

$$+ (1 - f_s) P_b(m) P_b(t \mid \sigma_t) P_b(\vec{\omega}) P_b(\vec{\sigma}_t) P_b(\vec{D})$$

Use transversity basis to separate CP even and CP odd states

VV final state defines 3D coordinate system

Need flavor tagging for best sensitivity to CP violation

- Define opposite side, same side tags
 - Can calibrate opposite side on B⁺ decays (self-tagging)
 - Need to calibrate same side with B_s⁰ decays
 - Use B_s⁰ mixing measurement

CDF updates flavor-tagged $B_s^0 \rightarrow J/\psi \phi$ result to 5 fb⁻¹

Fit includes possible non-zero S-wave component $(J/\psi f_0, J/\psi KK)$

Obtain 0.8 σ discrepancy w/SM prediction for β_s =0.02, $\Delta\Gamma$ = 0.096

Integrating over $\Delta\Gamma$ gives 1σ discrepancy with SM expectation that $\beta_s{=}0.02$

S-wave fraction consistent with zero

$$f_{s-wave} \in [0, 6.7\%]$$
 at 95% CL

Check β_s – $\Delta\Gamma$ fit without flavor tagging

CDF Run II Preliminary L = 5.2 fb⁻¹

Untagged and tagged fits agree well.

Clearly demonstrates the two-fold reduction in solutions due to flavor-tagging...

Check fit in different data periods

Fix β_s to SM expectation

Best measurement of B_s^0 lifetime, width difference, $B_s^0 \rightarrow J/\psi \phi$ polarization amplitudes

$$c\tau(B_s^0) = 458.6 \pm 7.5 \text{ (stat.)} \pm 3.6 \text{ (syst.)} \ \mu\text{m}$$

 $\Delta\Gamma = 0.075 \pm 0.035 \text{ (stat.)} \pm 0.010 \text{ (syst.)} \text{ ps}^{-1}$
 $|A_{\parallel}(0)|^2 = 0.231 \pm 0.014 \text{ (stat)} \pm 0.015 \text{ (syst.)}$
 $|A_0(0)|^2 = 0.524 \pm 0.013 \text{ (stat)} \pm 0.015 \text{ (syst.)}$
 $\phi_{\perp} = 2.95 \pm 0.64 \text{ (stat)} \pm 0.07 \text{ (syst.)}$.

Result now more consistent with that observed by D0

- D0 result very similar to CDF's!
 - Even more so now...

http://www-d0.fnal.gov/Run2Physics/WWW/results/prelim/B/B59/

Stay tuned for future updates to indirect NP searches!

Hopefully we'll also have evidence for NP from direct searches at LHC shortly!!!

29

Flavor physics program at Tevatron has been tremendously successful!

- Complements excellent programs of BABAR and Belle experiments at the B-factories
 - e⁺e⁻ colliders produce B's at the Y(4S) and Y(5S)
- Many unique measurements made at Tevatron
 - Observation of B_s mixing
 - □ CP violation in B_s systems
 - Discovery of b-baryons

Everyone wants to find "New Physics"

- The search for physics beyond the standard model is pursued through a broad program in HEP and PA
 - Direct searches for evidence of SUSY, leptoquarks, gravitons, ???
 - Searches for dark matter/dark energy
 - Indirect NP searches
 - New physics in loop processes could contribute additional CP violating phases, enhance rare decay rates

Tevatron Performance Has Been Excellent!

- Delivered ~9 fb⁻¹ of integrated luminosity
 - CDF and D0
 experiments each have
 collected >7.4 fb⁻¹

Relative & absolute $b \rightarrow s \mu^+ \mu^$ branching ratios

Use $\mathcal{B}(B \rightarrow J/\psi h)$ to calculate absolute branching ratios

$$\mathcal{B}(B^+ \to K^+ \mu^+ \mu^-) / \mathcal{B}(B^+ \to J/\psi K^+) = [0.38 \pm 0.05(\mathrm{stat}) \pm 0.02(\mathrm{syst})] \times 10^{-3},$$

$$\mathcal{B}(B^0 \to K^{*0} \mu^+ \mu^-) / \mathcal{B}(B^0 \to J/\psi K^{*0}) = [0.80 \pm 0.10(\mathrm{stat}) \pm 0.06(\mathrm{syst})] \times 10^{-3},$$

$$\mathcal{B}(B_s^0 \to \phi \mu^+ \mu^-) / \mathcal{B}(B_s^0 \to J/\psi \phi) = [1.11 \pm 0.25(\mathrm{stat}) \pm 0.09(\mathrm{syst})] \times 10^{-3}.$$

$$\mathcal{B}(B^+ \to K^+ \mu^+ \mu^-) = [0.38 \pm 0.05(\mathrm{stat}) \pm 0.03(\mathrm{syst})] \times 10^{-6},$$

$$\mathcal{B}(B^0 \to K^{*0} \mu^+ \mu^-) = [1.06 \pm 0.14(\mathrm{stat}) \pm 0.09(\mathrm{syst})] \times 10^{-6},$$

$$\mathcal{B}(B_s^0 \to \phi \mu^+ \mu^-) = [1.44 \pm 0.33(\mathrm{stat}) \pm 0.46(\mathrm{syst})] \times 10^{-6}.$$

BRs from BELLE (PRL103, 171801)

$$\mathcal{B}(B \to K^* \ell^+ \ell^-) = (10.7^{+1.1}_{-1.0} \pm 0.9) \times 10^{-7} ,$$

 $\mathcal{B}(B \to K \ell^+ \ell^-) = (4.8^{+0.5}_{-0.4} \pm 0.3) \times 10^{-7} ;$

Fit results for $B \rightarrow K^{(*)} \mu^+ \mu^-$

$B^0 \rightarrow K^{*0} \mu^+ \mu^-$

$q^2 (\text{GeV}^2/c^2)$	$N_{ m sig}$	$\mathcal{B}(10^{-7})$	F_{L}	A_{FB}
1 /		\ /		
0.00 - 2.00	8.52 ± 3.05	$0.98 \pm 0.40 \pm 0.09$	$0.53^{+0.32}_{-0.34} \pm 0.07$	$+0.13^{+1.65}_{-0.75} \pm 0.25$
2.00 - 4.30	8.91 ± 2.79	$1.00 \pm 0.38 \pm 0.09$	$0.40^{+0.32}_{-0.33} \pm 0.08$	$+0.19^{+0.40}_{-0.41} \pm 0.14$
4.30 - 8.68	16.86 ± 5.31	$1.69 \pm 0.57 \pm 0.15$	$0.82^{+0.19}_{-0.23} \pm 0.07$	$-0.06^{+0.30}_{-0.28} \pm 0.05$
10.09 - 12.86	25.71 ± 5.38	$1.97 \pm 0.47 \pm 0.17$	$0.31^{+0.19}_{-0.18} \pm 0.02$	$+0.66^{+0.23}_{-0.20} \pm 0.07$
14.18 - 16.00	21.91 ± 3.95	$1.51 \pm 0.36 \pm 0.13$	$0.55^{+0.17}_{-0.18} \pm 0.02$	$+0.42^{+0.16}_{-0.16} \pm 0.09$
16.00 - 19.30	19.78 ± 4.78	$1.35 \pm 0.37 \pm 0.12$	$0.09^{+0.18}_{-0.14} \pm 0.03$	$+0.70^{+0.16}_{-0.25} \pm 0.10$
0.00-4.30	17.43 ± 4.13	$1.98 \pm 0.55 \pm 0.18$	$0.47^{+0.23}_{-0.24} \pm 0.03$	$+0.21^{+0.31}_{-0.33} \pm 0.05$
1.00-6.00	13.92 ± 4.29	$1.60 \pm 0.54 \pm 0.14$	$0.50^{+0.27}_{-0.30} \pm 0.03$	$+0.43^{+0.36}_{-0.37} \pm 0.06$

$B^+ \rightarrow K^+ \mu^+ \mu^-$

$q^2 \left(\text{GeV}^2/c^2 \right)$	$N_{ m sig}$	$\mathcal{B}(10^{-7})$	F_{L}	$ m A_{FB}$
0.00-2.00	11.58 ± 4.60	$0.38 \pm 0.16 \pm 0.03$	-	$-0.15^{+0.46}_{-0.39} \pm 0.08$
2.00 - 4.30	18.02 ± 5.48	$0.58 \pm 0.19 \pm 0.04$	-	$+0.72^{+0.40}_{-0.35} \pm 0.07$
4.30 - 8.68	34.53 ± 8.87	$0.93 \pm 0.25 \pm 0.06$	-	$-0.20^{+0.17}_{-0.28} \pm 0.03$
10.09 - 12.86	29.15 ± 6.24	$0.72 \pm 0.17 \pm 0.05$	-	$-0.10^{+0.17}_{-0.15} \pm 0.07$
14.18 - 16.00	15.98 ± 4.64	$0.38 \pm 0.12 \pm 0.03$	-	$+0.03^{+0.49}_{-0.16} \pm 0.04$
16.00 - 23.00	13.94 ± 5.00	$0.35 \pm 0.13 \pm 0.02$	-	$+0.07^{+0.30}_{-0.23} \pm 0.02$
0.00-4.30	29.37 ± 7.15	$0.96 \pm 0.25 \pm 0.06$	-	$+0.36^{+0.24}_{-0.26} \pm 0.06$
1.00-6.00	32.67 ± 8.11	$1.01 \pm 0.26 \pm 0.07$	-	$+0.08^{+0.27}_{-0.22} \pm 0.07$

$B_s^0 \rightarrow \phi \phi$ polarization

Use displaced track data set to reconstruct $B_s^0 \rightarrow \phi \phi$ signal

Fit for $B_s^0 \rightarrow \phi \phi$ polarization amplitudes

$$P_{s}(\vec{\omega}) = \frac{9}{16\pi} \frac{1}{\Gamma_{H}(|A_{0}|^{2} + |A_{||}|^{2}) + \Gamma_{L}|A_{||}^{2}} \times \left[\Gamma_{H}(|A_{0}|^{2} f_{1}(\vec{\omega}) + |A_{||}|^{2} f_{2}(\vec{\omega}) + |A_{0}||A_{||}|\cos\delta_{||}f_{5}(\vec{\omega})) + \Gamma_{L}|A_{||}^{2} f_{3}(\vec{\omega})\right]$$

Since statistics are low, don't use time-dependent information (plus, trigger selection removes events that decay quickly \Rightarrow need to understand efficiency.) Completely equivalent to simplest likelihood for $B_s^0 \rightarrow J/\psi \phi$.

Fit for $B_s^0 \rightarrow \phi \phi$ polarization amplitudes

Fit for polarization amplitudes, strong phase δ_{++}

$$\begin{split} |A_0|^2 &= 0.348 \pm 0.041 (\mathrm{stat}) \pm 0.021 (\mathrm{syst}) \\ |A_{\parallel}|^2 &= 0.287 \pm 0.043 (\mathrm{stat}) \pm 0.011 (\mathrm{syst}) \\ |A_{\perp}|^2 &= 0.365 \pm 0.044 (\mathrm{stat}) \pm 0.027 (\mathrm{syst}) \\ \cos \delta_{\parallel} &= -0.91^{+0.15}_{-0.13} (\mathrm{stat}) \pm 0.09 (\mathrm{syst}) \end{split}$$

Longitudinal and transverse polarization fractions

$$f_{\rm L} = 0.348 \pm 0.041 ({\rm stat}) \pm 0.021 ({\rm syst})$$

 $f_{\rm T} = 0.652 \pm 0.041 ({\rm stat}) \pm 0.021 ({\rm syst})$

Mixing and decay in B_s⁰

Mixing between particle and anti-particle occurs through the loop processes

Three types of CP violation

□ Decay of hadrons → direct CPV

Only type of CPV for charged mesons

Measured precisely by BABAR and Belle

$$\blacksquare B^0 \to J/\psi K_s^0 \Rightarrow \sin 2\beta^{\leftarrow}$$

Use B_s⁰ mixing to calibrate SSKT

$$P_{s}(t,\xi \mid \sigma_{t},\mathcal{D}) = \frac{1}{N} \cdot \frac{1}{\tau} e^{-t/\tau} \Big(1 + \xi \mathcal{A} \mathcal{D} cos(\Delta m_{s}t) \Big) \otimes G(t \mid \sigma_{t}) \cdot \varepsilon(t \mid \sigma_{t})$$

□ Update mixing measurement to 5.2 fb⁻¹ of data

 $\mathcal{A} = 0.94 \pm 0.15$ (stat) ± 0.13 (syst) $\varepsilon \mathcal{A}^2 \mathcal{D}^2 = 3.2 \pm 1.4\%$ $\varepsilon \tau = 451.2 \pm 5.5$ (stat.) μm $\Delta m_s = 17.79 \pm 0.07$ (stat.) ps⁻¹

Mixing and decay in B_s⁰

Mixing of B_s^0 mesons is governed by Schrodinger eqn.

$$i\frac{d}{dt} \begin{pmatrix} |B_s^0(t)\rangle \\ |\bar{B}_s^0(t)\rangle \end{pmatrix} = \left(\mathbf{M} - \frac{i}{2}\mathbf{\Gamma}\right) \begin{pmatrix} |B_s^0(t)\rangle \\ |\bar{B}_s^0(t)\rangle \end{pmatrix} \implies \frac{|B_s^H\rangle = p |B_s^0\rangle - q |\bar{B}_s^0\rangle}{|B_s^L\rangle = p |B_s^0\rangle + q |\bar{B}_s^0\rangle}$$

http://www-cdf.fnal.gov/physics/new/bottom/100204.blessed-sskt-calibration/index.html

$B_s^0 \rightarrow J/\psi \phi$ Decays Are A Good Place to Look for New Physics

Decays of $B_s^0 \rightarrow J/\psi \phi$ gives access to CP violating phase predicted to be nearly zero in Standard Model

$$\beta_{s}^{J/\psi\varphi} = \arg\left(-\frac{V_{ts}V_{tb}^{*}}{V_{cs}V_{cb}^{*}}\right) \sim 0.02$$

□ Large phase in b→s transition could lead to significant non-zero CP phase

New physics could produce large CP phase!

G. Hou et al suggest that t' quark w/mass $\sim 300~\text{GeV/c}^2 - 1~\text{TeV/c}^2$ would give $\beta_s \sim 0.5$

$1D \beta_s$ result

 1σ discrepancy with SM prediction

[0.02,0.52] U [1.08,1.55] @ 68% CL [- π /2, -1.44] U [-0.13, 0.68] U [0.89, π /2] @ 95% CL